From genes to behavior: How electrophysiological studies can provide insight into autism and other disorders

> Sara Jane Webb, PhD Research Assistant Professor Psychiatry and Behavioral Sciences

Funded by NICHD Collaborative Program of Excellence in Autism; NIMH Studies to Advance Autism Research and Treatment; Cure Autism Now; National Alliance for Autism Research University of Washington

Behavioral diagnosis of PDDs

- Typically diagnosed around 3 years of age
- Can be reliably diagnosed at 18 months
- Retrospective home video studies and behavior studies in "at risk" infants distinguish at 12 months
- Pattern of behavioral change
 - 6 and 12 months
 12 and 18 months
 - 12 and 18 months
- 4:1 ratio of males to females
- Social class distribution resemble

Enat of the general populati
 Equivalent distribution con

and ethnic boundaries

Genes	
•	2q
•	7q - Languag
	. ED

- FoxP, WNT2, HOXA1, HOXB1
 RELN neuronal signaling, synaptic transmission, plasticity
- 15q
 Prader-Willi, Angelman Syndrome region
- х
- FMR1 Fragile
 MeCP2 Rett's
- NLGN2, NLGN3 (neuroligins)
- GABA receptor subunits
 6a15: 15a12)
- Serotonin transport gene
- Differ by sex (male vs female affect families)
- Differ by parent of original

- Aarskog syndrome (X)
- Angelman Syndrome (15q)
 Cornelia de Lange Syndrome (5)
- Cornelia de Lange Syndrome (5)Fragile X (X- FMRP gene)
- Fragme X (X- FWRP gend
 Hypomelanosis of Ito
- Moebius syndrome
- Neurofibromatosis
- PKU
- Prader Willi Syndrome (1:
- Rett Disorder (X- MeCP2 gene)
- Smith Lemli Opitz Syndrome (11q
- Touratto Service
- Tuberous Seleros
- Williams Syndrome (7q)

EEG vs. ERP

- EEG electroencephalogram
 - "Spontaneous" background activity
 - Reflects the state of the brain
 - ♦ Induced
 - ♦ Not time locked
- ERP- "event related" "evoked"
 - Time locked to a stimulus or behavior
 - Averaged

- ERPs latency, amplitude, & topography
- EEG frequency, power, & topography
- Coherence (connectivity)

Can EEG/ERP be used as endophenotypes? – Other disorders

- Heritability
 - Alcoholism (Almasy et al., 1999; Martin et al., 2005) • Theta 40-60%, Linked
 - to 7 • P300 amp & latency Twins (Anokhin et al., 2004; Katsanis et al., 1998; Smit et al., 2005; vanBeijsterveldt van Baal, 2002)
 - Frontal N2/P3 amplitude 60%
 - P300 amp 50%

 - EEG peak alpha power

- At risk pop.
 - Dyslexia
 - Auditory ERP phoneme processing
 - Alcoholism
 - Reduced amplitude P300 to novelty

N170 across development

- ERP component that is elicited by Faces.
- Adults
 - ◆ Latency 140 to 170 msec
 - Greater & faster to faces than other stimuli
 Right lateralized
- Children 3 to 11 years
 - ◆ Latency 280 msec --> 180 msec
 - ♦ Right lateralized

ERPs- Event Related Potentials

- Model
 - Collection during stimuli / task known behavioral impairment
 - Autism Face Processing
 - Face memory is phenotype of disorder
 - Identify stage of disruption

EEG Power

Collection during resting or active state

- Model Target processes that have known EEG correlates & known behavioral deficits
 - ◆ Autism Imitation
 - Imitation deficits (behavior) in ASD
 - Identify abnormalities in neural patterns underlying observe/ imitate

N170 - Endophenotype?

- Delayed temporal processing & abnormal cortical specialization
- Populations:
 - ♦ 3 to 4 year olds, 6 year olds, Adolescents
 & Adults, Parents (multiplex families)
- Related to behavior yes
- Risk Factor ?
- Heritable ?

Imitation & Mu

- Mu = 8 to 13 Hz over central leads
 - Execute, Observe, Imitate Muthukumaraswamy et al., 2004
 - Ratio of power relative to resting
 - Log transformed due to non-normality or ratio data
 - Negative value representing attenuation

EEG Power (wavelet)

- Collection during resting or active state
- Model Target processes that have known EEG correlates
 - Autism Feature (temporal) Binding
 Parts based processing bias behavioral
 - Identify abnormalities in neural patterns that may contribute

phenotype of ASD

Temporal binding

Temporal binding & gamma

- Temporal binding
 - Neurons that respond to the same object are tagged by their temporal correlation during firing (Milner, 1974; von der Malsburg, 1981).
- Assessed by EEG Power in gamma band (30 to 80 Hz)
- Feature Binding (Muller et al., Tallon Baudrey et al.)
- Central coherence (Brock et al., 2001)

Feature Binding thru temporal binding

- Binding of actual items to create additional (illusory) item
 - ♦ Kanisza figures
 - ♦ Mooney Faces

 Increase in gamma over visual cortex to perception of "illusory figures"
 ~ 50 to 100 msec after stim onset

Temporal Binding- Circuitry formation

- Binding of active neural regions to accomplish task efficiently
 - Delayed match to sample
 - Multiple stimuli types
 - Encoding
 - Delay (working memory)
 - Retrieval and Response

Mu / Gamma - Endophenotypes ?

- ASD mu atypical
- ASD gamma typical (~)
- Atypical binding of frontal-occipital regions.
- Related to behavior Yes (mu)
- Risk factor ?
- Heritable ?

EEG - active state

- Mu
 - Lack of mu attenuation during action observation
- Gamma
 - Increase in gamma activity during working memory
 - ◆ Failure to link neural circuitry

EEG Connectivity

- Collection during resting or active state
- Model: Theoretical description of neural systems / anatomy & behavior.

♦ Autism

- Individuals with autism have known white matter abnormalities
- Proposed deficit in long range connections

Connectivity

Coherence

- Phase relations between two EEG signals
- Squared correlation coefficient, expressed as a function of frequency
- Coherence reflects the transmission of neural signals along axonal projections. (Nunez, 1981)

Connectivity - Endophenotype?

- Band specific differences
- Relation between frontal and parietal/occipital
- Related to behavior
 - ◆ Theoretically yes
- Heritable -
 - Schizophrenia / Twins yes
- Risk factor ?

Conclusions, ASD

- Temporal slowing during early processing stages
- Lack of or atypical cortical specialization
- Alterations in resting and active state EEG
- Disrupted connectivity

Implications for therapy

- Does intervention lead to
 - ◆ More efficient processing? Latency
 - Amount of activation
 - ♦ Connectivity?
 - Compensation or normalization?

Differentiation of disease states

- Common phenotypes
 - ◆ Face processing/memory
 - Attention
 - Working memory

Collaborators

- Geraldine Dawson PhD
 - Elizabeth Aylward PhD
- Andreas Keil (University of Konstanz, Germany)
 James McPartland PhD (Yale)
- Neva Oskin PhD
- Todd Richards PhD
- Raphael Bernier MA, PhC
- Susan Faja MA
- Karen Toth MA, PhC
- Kristen Merkle
- Megan Paul
- Audrey Quinn